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THE SIMILARITY LAW FOR HYPERSONIC FLOW AND REQUIREMENTS FOR DYNAMIC
SIMILARITY OF RELATED BODIES IN FREE FLIGHT * ‘

By Frang M. Haasker, STanrForp E. NuicE, and Troaas J. Wona

SUMMARY

The similarity law for nonsteady, inviscid, hypersonic flow
about slender three-dimensional shapes 18 derived in terms of
customary aerodynamic parameters. The conclusions drawn
from the potential analysis used in the development of the law
are shown to be valid for rotational flow. A direct consequence
of the hypersonic similarity law 18 that the ratio of the local
static pressure to the free-stream static pressure 18 the same at
corresponding points in similar flow fields.

Requirements for dynamsic similarity of related shapes in free
Slight, including the correlation of their flight paths, are obtained
using the aerodynamic forces and moments as correlated by the
hypersonic similarity law. In addition to the conditions of
hypersonic similarity, dynamic similarity depends upon con-
ditions derived from the inertial properties of the bodies and the
immersing Auids. In order to have dynamic gimilarity, how-

ever, rolling motions must not occur in combination with other

motions,

The law s examined for steady flow about related three-
dimensional shapes. The results of a computational investiga-
tion showed that the similarity law as applied to nonlifting
cones and ogives is applicable over a wide range of Mach num-
bers and fineness ratios. .- In the special case of inclined bodies
of revolution, the law 18 extended to include some significant
effects of the viscous cross force. Resulls of a limited experi-
mental investigation of the pressures acting on two inclined
cones are found to check the law as it applies to bodies of
revolution.

INTRODUCTION

The hypersonic similarity law for steady potential flows
about thin airfoil sections and slender nonlifting bodies of
revolution was first developed by Tsien in reference 1.
Hayes (vef. 2) investigated this law from the standpoint of
analogous nonsteady flows and concluded that it would also
apply to nonpotential flows containing shock waves and
vorticity, provided the local Mach number was everywhere
large with respect to 1. He also reasoned that similitude
could be obtained in hypersonic flows about slender three-
dimensional bodies of arbitrary shape; however, the form of
the similarity law in terms of customary aerodynamic
parameters was not determined. Oswatitsch (ref. 3) investi-
gated the law for two-dimensional steady flow in the limiting
case where the Mach number tends toward infinity and,
hence, ceases to be a flow parameter. His formulation of the

. thickness ratios.

law, therefore, involves only thickness ratio and angle of
attack. Goldsworthy (ref. 4) investigated the effects of
rotation on the hypersonic similarity law for two-dimensional
steady flow. His results corroborated, in part, the previous
findings of Hayes and showed the potential analysis of Tsien
to be valid.

An investigation of the law as it applies in nonsteady flow
was made by Lin, Reissner, and Tsien (ref. 5). In particular,
the necessary conditions for similarity of hypersonic flow
about oscillating two-dimensional bodies were determined.
The analysis for more arbitrary motion of two- or three-
dimensional bodies is apparently not available.

Ehret, Rossow, and Stevens (ref. 6) investigated the hyper-
sonic similarity law for steady flow about nonlifting bodies
of revolution by comparing pressure distributions calculated
by means of the method of characteristics. They found the
law to be applicable over a wide range of Mach numbers and
Their investigation did nof, however,
include the effects of vorticity arising from the curvature of
the nose shock wave. Rossow (ref. 7) continued this in-
vestigation and found that the law was equally valid when
the effects of vorticity were included in the calculations.

These findings corroborated, in. part, the observations of

Hayes and indicated that the law may be used with con-
fidence to investigate the aerodynamic characteristics for
steady flow about nonlifting bodies of revolution at hyper-
sonic speeds.

It appears desirable, therefore, to attempt to unify the
different treatments of the similarity law into 2 single formu-
lation. The primary purpose of this report is, then, to
determine the form of the hypersonic similarity law for non-
steady flow about slender three-dimensional bodies of
arbitrary shape and to present the results in terms of custom-
ary serodynamic parameters. It is further undertaken
to examine the hypersonic similarity law in some detail as
it applies to steady flow. .

The possibility of obtaining a hypersonic similarity law
for correlating the aerodynamic forces and moments on
related shapes in free flight suggests a more general dynamic
problem, that of correlating their rotions with the aid of
this law. Hence, it is also undertaken in this report to
determine the requirements on the inertial properties of
related bodies and the immersing fluids in order that such
bodies may have similar free-flicht paths, that is, dynamic
similarity.

1 Supersedes NACA TN 2443, ‘““The 8imflarity Law for Hypersonic Flow About Slender Three-Dimenstonal Shapes,” by Frank M. Hamaker, Stanford E, Nelce, and A. J. Eggers, Jr.,
1061, and NAGCA TN 2631, ““The Similarity Law for Nousteady Hypersonic Flows and Roquirements for the Dynamical S8imilarity of Related Bodles In Free Flight,” by Frank M. Hamaker

and Thomag J. Wong, 1052,
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SYMBOLS

speed of sound

characteristic reference area of body, 4=bt
characteristic width of body

side-force coefficient, Sl?—-,—ie forze

side-force function

ent, — 128
drag coefficient, To VA

e N N N I

drag function .
rolling-moment coefficient, o 1oment
300 Vi AD

rolling-moment function

. lift

lift coefficient, ——55— ToaViA

1ift function

v . pltchmg moment

Ppitching-moment coeﬁiclent To0Vidc

pitching-moment function

yawing-moment coefficient, i%———— ngOMt
Pa

Pl

yawing-moment function

specific heat at constant pressure

specific heat at constant volume

characteristic length of body '

section drag coefficient of circular cylinder
with axis perpendicular to the flow

mean ¢y, for a body of revolution

displaced-fluid-mass factor, b;p 0

length of flight path

viscous force or moment function

dimensionless perturbation potential functlon

general funetional designation

body-shape function

dimensionless body-shape function

vector from the origin of the coordinate system
to any point on the body

unit vectors along coordinate axes z,y,z, re-
spectively

£°an

L]

>
&

;'I‘QQ'EH‘H):,;Q_, Y

?—’ moments of inertia of body about the z,y,z
I’" axes, respectively

K=, E=21,0
K.,=Mya, Ks=M,8

pb \hypersonic similarity para-

Ey=38, K,=M, V0 ' meters
=1, ) K,—Mo( )

¢*D 2D ¢*D

- k4 K X - . - .

K. . I K’ L, dynamic similarity
B, = ;D’ K— D parameters

23 *

direction. cosines of the unit outer normal
vector to the body surface
M ~ Mach number

Immn
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MM, M, moments acting on body about zjy,z axes,
_ respectively
N unit outer normal vector to surface of body
P static pressure
D,q,7 . rolling, pitching, and yawing velocities, re-
. spectively
R . radius of curvature of flight path
B, cross Reynolds number based on maximum
body diameter and the component of the
free-stream velocity normsal to the body
axis
r radius of body of revolution at any station z
8 cross force per unit length
¢ characteristic depth of body
U0, components of body velocity along the z,3,2
axes, respectively
v resultant velocity
29,2 Cartesian coordinates fixed relative to the
- body
XY,z forces on body along 2,7,z axes, respectively
‘e -angle of attack
8 angle of sideslip
vy ratio of the specific heats, 7=%’-’
b angle of roll
€ orifice location on the test cones
£t dimensionless coordinates corresponding to
x,Y,2, respectively
6 . time coordinate
B mass of body’
p density of the fluid
T dimensionless time coordinate, adz{[w
® perturbation potential function
b ) potential function
¥,Q alternate time variables
) angular velocity of the body
SUBSCRIPTS
-0 free-stream conditions
v viscous cross-force effects
1,2,3 different functions F, Cm, or C,, except as
noted
. SUPERSCRIPT

- vector quantities

Except for symbols noted above, all variables used as
subscripts indicate partial differentiation with respect to
the subscript variable.

THE SIMILARITY LAW FOR NONSTEADY
THREE-DIMENSIONAL FLOW

DEVELOPMENT OF THE LAW

The hypersonic mmﬂa.nty lew is derived from the equations
of motion and energy and from the boundary conditions.
In deriving the law, the following assumptions are made:
(1) The Mach number of the uniform stream is large com-
pared to 1; (2) the disturbance velocities are small compared

'



THE SIMILARITY LAW FOR HYPERSONIC FLOW

to the free-stream velocities; and (3) the flow is of the
potential type. These assumptions imply that the analysis
is restricted to hypersonic flow over slender bodies at small
angles of attack and to irrotational flows, respectively. As
was indicated in the introduction, the law has been extended
to rotational flows by both Hayes and Goldsworthy. An

analysis is presented in Appendix A to show that the rota-,

tional effects in a three-dimensional nonsteady flow obey
the hypersonie similarity law as formulated by the potential
analysis. Hence, the conclusions derived from the analysis
based upon potential flow will also be valid for rotational
flow. The purpose of making the assumption of potential
flow is merely to simplify the analysis.

The coordinate system is fixed with respect to the body,
a8 shown in figure 1. Also shown are the possible angular
velocities of the body and the direction of the velocity vector
of the free stream. The angles have the conventional
positive sense of angles of attack and sideslip. Under
assumption (2), these angles must be small.

z

, y

4%

Ja
P

F1aURE 1.—Schematic diagram of orientation of body in flow.

The development of the law involves, first, derivation of a
simplified potential equation describing the flow, second, the
statement of the boundary conditions, and third, the-trans-
formation of these equations into nondimensional coordinates.

The simplified potential equation is obtained from the
nonsteady equation of motion and the energy equation which
are written in the following potential form:

Dot Bre( B2 —0%) + By (B, — %) + B B — ) +
2( Py DDy Bys Dy Prt BB )+
2(@,@,5—[- D, Py Qaq’d)=0 (1&)

Ve, ag
2 Ty—1

2
q’a'l"é‘ (‘pzz"l"q)vz'l'q’t,)'l"y_a_ 1 (1b)

These equations are expanded by expressing the potential-
function derivatives in the following perturbation form:

&= VO 2 + Pz i

(I>7= - VO ﬁ +‘PF (2)
=Voate,

Py=gy
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The local speed of sound a can be eliminated by combining
the expanded forms of equations (1b) and (1a). The result-
ing equation can be simplified by neglecting higher order -

- terms keeping in mind that for hypersonic flows about

slender shapes o;, ¢, ¢, and ay are small compared to V,
and that ¢, is small compared to ¢, and ¢,. The simplified
potential equation then assumes the following form:

P Mt o | M +r—1) e 1) 2 oyt

1) 2 g 4 YL O VL e 1"‘ v —1)ﬁ—1]+

on [Mo=a2+<v— )Mo ¢,—<7—1)——° BoyH(y+1) Ef ot

7—1 ¢U |_'Y+1 ‘Pl |

——1]+2|:Mo¢n<—Moﬁ+% +

2 ag'
MyBe, M, .
o (—MPas— ;f“’ + 20200 L 2 1 U, (—Dlret
@ Mopss  MoBow  overr | Mocpws | 2o _
ao>]+2( s G Tad T a Tz )0 3)

The shape of the body can be expressed by the functional
relation
G(z,y,2)=0 4

The unit outer normal at a point on the body surfaceé is given
by the vector

N=l+mj+nk )
and the requirement that the body be slender is satisfied by
the condition

1<<1 - (®)

There are two boundary conditions which must be satis-
fied. The first of these is that the perturbation velocity,
imposed by the presence of the body, must vanish at large
distances ahead of the body. Consequently,

er=oy=¢,=0at t=— (7)

The other boundary condition is given by the fact that the
flow is tangent to the body at the surface, that is, for no

angular velocity -
N.V=0 ®

The angular velocity of a body will cause an apparent dis- .
tortion of the velocity vector at the surface of the body. By
expressing the angular velocity in the form,

o=pif-g+rk 9)

the velocity of each point on the surface of the body is then
given by the vector cross product

&Xh=(gz—ry)i+ (re—p2)j+ (py—g2)k (10)

The boundary condition on the surface of the body then
becomes

(V—&Xk)-N=0 (11)
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After equation (10) is expanded.and combined with equation
(11), and higher order terms neglected in accordance with
equation (6), the second boundary condition assumes the
followmg form:

G:— (VoB—p,+ra—p2) G, +
(Voate:+gr—py) G:=0 at G=0 (12)

In obtalning the similarity law for flow about related
bodies, the equations of motion and boundary conditions are
expressed in & nondimensional form. A nondimensional
coordinate system .s introduced by the following affine
trensformation: :

gaoMo

c

z y z
£ clﬂ b)g. tlT

(13)

and a nondimensional perturbation potential function is
defined by the relation

o,7,2,60)

it (3

where ¢, b, and ¢ are a characterisfic length, width, and depth
of the body, respectively. Under the coordinate transfor-
mation given above, equation (4) takes the form

g(&n,8$)=0 (15)

By substitution of equations (13) and (14), equations (3),
(7), and (12) become, respectively,

B2t fe+(5) Ju| Ko+ — DK~

FEn, ¢ =2, 14)

o0 (B) BByt 1) KiKufit
7
(r—DEHe—(r—1) ( %) BEaf A DEK. S+
r—1 <_t

5\,
() () it ] () e -

) Rt B [+ B Bt K )+

Kz*fq’ +2

K/’

“’+1 KX+ (—DEM, —1]+

KK fi+ K,
() [t (s
KBt K= (16)

)b (E) 15 () (e
() -(8) s

where

E=M,> (19)

S KM= D K1 [ ] B2 +
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- K=y 2 (20)
Ko=My « @1
Ky=M, 8 (22)
=14 () (23)
| Mo< ) (24)
K= (%2 ) (25)

It is seen then that, if two related bodies are flying with given
motions and attitudes so that the parameters, equations (19)
through (25), are the samé for both bodies, the flows are
characterized by the same function f(£,9,¢,7) and are there-
fore similar. The requirements expressed by the mnon-
dimensional form of the body-shape function, equation (15),
and the similarity parameters, equations (19) through (25),
therefore constitute the similarity law of hypersonic flow.

A closer examination of the parameters K, K,;, K,, and
K reveals that an essential property of similarity is that the
lateral dimensions and the slopes of a body with respect to
the flow direction are in inverse proportion to the flight
Mach number. In fact, the remaining parameters K,, X,
and K, which relate to nonsteady motion of the body, can
be interpreted by means of the same property. In rolling,
for example, points on the body surface perform helical
motions, and the quantity pb/V, in equation (23) is simply
proportional to the slope of the helix with respect to the flow
direction. This slope must be inversely proportional to the
flight Mach number. Similar arguments may be applied
to K, and K,. )

Because of the complexities of algebra involved, the effects

-of angle of roll were not included in the previous equations.

Had they been included, however, the result would be the
same as above with the additional requirement that the
angle of roll must be the same for the related bodies. Henceo,
the additional hypersonic similarity parameter is

K;=s5 (26)

CORRELATION OF ABRODYNAMIC FORCES AND MOMENTS

The correlation of aerodynamic forces and moments on
related bodies in unsteady hypersonic flows can be developed
by consideration of the pressure distribution over the bodies.
The pressure relation is obtained from the energy equation,
equation (2), and is given in the following form;

P F] 0 'Fi
5 y— 120;0 (27)
° +—2_a,2— (V34249

When this expression is simplified (in a manner paralleling
the development of the preceding section) to include only
higher order terms and put into nondimensional form, it
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reduces to a ﬂmction only of the nondimensional coordinates
and the similarity parameters (for a constant 7).

—g):% & & K, Ky Ko, K, Ki, Ky, Koy K7) - (28)

It is clear from this relation that for similar flaws, the ratio
of the local to the free-stream static pressure is the same at
corresponding points in the flow fields.?

The correlation of the aerodynamic forces and moments is
then obtained with the aid of equation (28) by integration

of the appropriate components of the pressure forces over-

the related shapes. This correlation can be given in the
following forms:

MyCo= Gp=C,(K,, Ky, Ko, Kp, Ky, K, K, K)

-

M020D= dll)=6D(Kl: Kb: Ka: Kﬁ’ KJ’ Km K,, Kr)

MyCo= Cy=Co(K,, Ky, Koy Ks, K, K, Ky, K)

- (29)

MyOn=0o=0C, (K, . . . K,)+ﬂ7}o§ G (K, ... K)

O=Ou=COn (B, . . . B)typs On&i . . K

ﬂ100;=5’;=5’;(K, .« o .K,-)

o

It appears, from the equations for the pitching-moment and
yawing-moment functions of equation (29), that these two
functions cannot be correlated for related- but otherwise
arbitrary body shapes. However, a careful examination
of the order of magnitude involved in the analysis indicates
that the second term on the right in these expressions becomeés
negligible in magnitude in all but two very special cases.
In the case of the pitching-moment function, both terms on
the right side become of the same order of magnitude when
the [ and » components of the unit normal to the body
surface are very small. This condition corresponds to an
isolated vertical fin as shown in figure 2 (a). If, however,
the vertical fin is mounted on a body, or used in combination
with 2 body equipped with horizontal wings, the contribu-
. tion of the vertical fin to the total pitching moment will be
very small indeed. The contribution of the second term in
the pitching-moment function for the entire body will, of
Z

- y

X 4 X

\I 2
<<;——~ y
(a) (b)

(a) Pitching moment. (b) Yawing moment.

Fiaure 2.—Bodies excluded from similarity considerations as applied
to pitching and yawing moments.
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"course, be correspondingly small. An analogous situation

exists in the yawing-moment function for an isolated wing
(fig. 2 (b)) in which the I and m components of the unit
normal vector are both small. For most practical aero-
dynamic shapes, therefore, the offending terms can be
neglected, and correlation of the aerodynamic coefficients
can be achieved as shown in the following relations:

MyCy=Cp=Ci(B., Ky, Ku, K, B, Ky, K,y K))
M3Cor=Cp=Cp(K, Ky Kay Ks, Ky, K, K,y Ky)
MyCo= Co= Co(B., Kn, Ky K, Ks, Ky, Koy Ko)
MyCo=Cr=Cu(K., Ky, Ko, K, K, K, K,, K)
0= G= O, Ky, Koy Kay Ks, K, Ky K)

M,Ci= Ci= G\(K,, Ky, Ko, Ko, K, K, K,y K) )

DETERMINATION OF REQUIREMENTS FOR DYNAMIC SIM-
ILARITY OF RELATED BODIES IN FREE FLIGHT

- (30)

The requirements for dynamic similarity of related bodies
in free flight are developed on the assumption that the forces .
and moments on such bodies are correlated by the law of
hypersonic similarity. In order to determine the conditions
for dynamic similarity to be coexistent with hypersonic
similarity, the dynamic equations of motion should be
transformed to the same dimensionless coordinate system
that was used in developing the requirements for hypersonic
similarity. In addition, the velocity and force quantities
should be expressed in terms of hypersonic similarity param-
eters.

In this dynamic system, only those forces are considered
which correspond to the “power-off”’ conditions in free flight.
The coordinate axes are taken to be principal axes of the
body so that the products of inertia vanish. The dynamic
equations of motion of the body are given by the relations

~

Up—ry + qw=§—

Y

vs—pwt ru=2 (31)

un

Z
We— QU +pv =—
B

pﬂIx—-z'—qr(I —v_Ix—z) =Mx
gLy y—pr(I;_,—1I.2) =M, (32)
TOIz—:‘_‘pQ(I:—z_ y—r) =M, ’

The translational and rotational velocities may be expressed
in terms of hypersonic similarity parameters, the Mach
number, and the speed of sound of the free stream by the

relations
u=agM,, v=—aKp, w=a,K.

K, K, K,

.k, & ©3)
P=ay 3 ? Q—ao? r—a'OT

2 Analogous statements can be made for the ratios of local to free-stream values of temperature, donsity, and Mach number,
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Similarly, the aerodynamic forces and moments are given in
terms of the correlation functions by the relations

51_) aazMobtpo
X=g2 (*557*)
. a-onoI;tpo
r=0, (")

M obt
20, (2ibter)
M __ab (%2Mobtpo>
= ‘—2

2
Mp= 5,,, c (_—a»o ﬂéObtp‘))

M=, 1M, (——%’M°bt"°)
t 2 n 2

(34)

. S
By substituting equations (33) and (34) into equations (31)
and (32), and by treating only that length of flight path
over which M, can be considered constant, the following set
of equations is obtained:

K K.+KEK=K,»p (35)
dK, KK, . "
LK, gj' —E,0, @6)
K, - K .
dd_‘_ —K, §ﬁ=KpéL @37

1 dE, /1 1

KaKr Kb él (38)

K. .K, d+ K,_, K, .,] M@ Mg
1 dK’ 1 \KK,
K Kx—: Kx—: Kbp 6’"‘ (39)
1 dK
—K ” 40
o =i o K._,> 0 (40)
where K, is given by 3
B~ (1)
and where \
AR (42)
D
K, =%~ (43
v—v I’_y ( )
2
K,_,=;—£ (44)
_Cbtpo
D——2 45)

The initial conditions to this set of equations are the initial
values of the hypersonic similarity parameters.

If both hypersonic similarity and dynamic similarity are
to be achieved, it is required that equations (35) through
(40) be independent of the Mach number as a separate
variable. The elimination of M@ from equation (38) is
impossible in the general case, even approximately, because
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all the terms involved may be of comparable order of magni-
tude. Consequently, since equation (38) is the relation for
rolling effects, it is indicated that flight paths which include
rolling cannot be correlated by this method for obtaining
dynamic similarity. ~ For motions that do not involve roll,
it is seen that dynamic similarity will exist for related shapes
if the hypersonic similarity parameters and the dynamic
similarity parameters given in equations (41) through (44)
remain invariant. These dynamic similarity parameters re-
late the masses of the bodies and the immersing fluids, as

~well as the distribution of the mass in the body.

For rolling motions only, correlation can again be achieved
but with & slightly different set of parameters. In this case,
only equation (38) remains and can be rewritten as

K,l — —C’, (46)
where, now \
K, =22 @)

so that correlation for pure rolling motions is now given by
the hypersonic similarity parameters and the parameter
K\ ..

A familiar example of motions where rolling effects would
be absent is the case of motions confined to the plane of
symmetry of the body, the so-called longitudinal motions.
To extend the application of this law to the more general
cagse where there are lateral motions as well as longitudinal
ones, but no roll, it is necessary to have a suitable symmetry
of shape and to have the inertial properties satisfy the

relation
K, =K. . . (48)

"When these conditions are fulfilled, the flight paths of
related bodies can be correlated. As an illustrative example,
the disturbed motions of related missile shapes can bo ex-
amined. The lengths of corresponding portions of related
flight paths would be proportional to the corresponding
lengths of the shapes. This property can be used to relate
the amount of damping in the disturbed flight paths. As
shown in Appendix B, the radii of curvature at corresponding
points of the flight paths would be proportional to the product
of the body length and the flight Mach number. Some of
these points are illustrated in the example given in figure 3.

APPLICATION OF THE LAW TO PARTICULAR SHAPES IN
STEADY FLOW

In steady flow, the three similarity parameters K, K,
and K, are zero and equations (30) reduce to the following
form:

MyCy=Up= Co (K Ko Ko Kp Ks) )
M3Cp=Cp=Cp (KK, K., K, Ky)
MyCo= 5 = Op(K , Ky, Ko, K, K) |
MyCn =0n(B K, K., B Ks)
Cp= C’.= Cu(B K, Ko K, K)
M,0= 0= Oy(K K, K., Ks,Ky) )

(49)

3Tha parameter Kx Is equivalent to a famfliar stability-analysis term known as the relative mass factor.
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-
Mo“4.o
/e =300
b/c=,300
#,8.0 e) .
122080 ——————pp —_— =
b/t )50 s a
Cax2c¢, Z:.%ob I-'“—-CD e la
“cHp ° D,
Ry 4Ry Crotli2c,)
aoel/2a, Gng™V/ 26y,

Froure 3,—Related wing-body combinations at hypersonic speeds.

It is important to note that the correlation of the aerodynamic
coefficients given by equations (30) was obtained on the basis
of two restrictions as to allowable body shapes. (See section
Correlation of Aerodynamic Forces and Moments and also
fig. 2). These restrictions apply equally well to equations
(49).

BODIES OF REVOLUTION

For bodies of revolution, equations (49) reduce to *
111001.= 61,: &L(KlyKa)

M020D= 5D= 5D(KtrKa)
MyOp=Cp=Cn(K,K.)

(50)

where K, is eliminated as it is identical to X,.° Itis apparent
from these relations that the corresponding force and moment
parameters have identical values for related bodies of revo-
lution, provided the corresponding similarity parameters
have identical values.
conclusion can be generalized to include significant effects
of the viscous cross forces on related inclined bodies.

The-viscous cross force arises from the boundary-layer flow
transverse to the body axis. A method of estimating this
force along with the lift, drag, and pitching-moment co-
efficients associated with it has been suggested by Allen in
reference 8 and is presented in Appendix C. The resulting
expressions for these coefficients (see egs. (C3) in Appendix C)
are transformed to the mnondimensional form, and the
following relations are obtained:

MOOL,=éd¢Fl (Kt: Ka)
MOQCD,,=340F2 (K,, -Ka)
MoCaey=24,Fa(K, Ko)

(51)

TFor slender bodies of revolution of the type under considera-
tion, és,is primarily a function of the Mach number and

Reynolds number of the flow component normal to the body

It will now be shown that this -
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axis. Consequently, these expressions can be reduced to
the form

MyCry= G = C; (B, K., R.)

ﬂffa2 OD,= 5D,= 5D,(K t;Kd: Rc) (52)
MyCp,;=Cr,=Cn (K, Ko, R
where B, is the cross Reynolds number. For small angles
of attack, the cross Mach number is identical to K,. It is

clear, when comparing thege relations with those of equation
(50), that the latter relations apply with equal validity when
viscous cross-flow effects are considered, provided that R,
is included as & similarity parameter.®

Nonlifting cones and ogives.—In reference 6 an analysis
was performed to determine the limits of applicability of
the hypersonic similarity law for nonlifting cones and
ogives.” To determine this limit for cones, surface pressures
were calculated using reference 9 and were plotted as a
function of the similarity parameter K, as shown in figure 4.
A single curve favoring the slender cones was faired through
the calculated points. It is apparent that the similarity in

- pressure holds for a wide range of values of K, for slender

cones. If it is assumed that a pressure deviation of 5 percent
from the faired curve can be tolerated in using the similarity -
law, then limits of similarity can be determined as a function

48
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Ficure 4.—Variation of pressure ratio, P[P, with similarity parameter,
K,, for nonlifting cones.

¢ Beeause of the axial symmetry of bodles of revolation, only angles of attack are considered. This latter consideration obviates a discussion of force and moment characteristics at
angles of sideslip or combined angles of attack and sideslip, while roll, of course, has no meaning. Itisclear, then, that the similarity parameters Kpand E; are eliminated from this analysis.
5Tf tho angle of attack s zero, K« I8 also zero, and the expression for the drag parameter reduces to a form equivalent to that obtained by Tslen in reference 1.

8 Tt I3 assumed that the viscous flow considered here does not significantly influence the potential, inviscid flow discussed previously. Hence, the force and moment coefficlents resulting

from these flows may be superimposed.

71t should be noted that oglves are not exactly a related set of bodles ;nevertheless, they were chosen In this study since the configuration 1s of interest, and the deviation In thickmess

distribution Is not significant for slender bodies.
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of Mach number and fineness ratio ¢/t of the cone. The
limits determined in this way are illustrated in figure 5 (a).
The shaded area indicates the regions of Mach number and
fineness ratio where the similarity law as applied to pressure
on the cone will be in error 5 percent or more.

Since the surface slope of an ogive is largest at the vertex,
the-pressures at this point should provide a critical test for
similarity of pressures. Accordingly, the limits of applic-
ability of the law for ogives were determined in reference 6
from consideration of the pressures over & cone tangent to
the ogive at the vertex. Figure 5 (b) presents the limits of
applicability for ogives as obtained by this method. These
results illustrate the conclusions of reference 4 that the law,
as applied to nonlifting cones and ogives, is applicable over
a wide range of Mach numbers and fineness ratios in spite of
the simplifying assumptions made in the derivation.

A check of the applicability of the hypersonic similarity
law in a rotational flow field was performed in reference 7
by comparing the pressure distributions, obtained by the
method of characteristics, over ogive cylinders at several
values of K;. The pressure distributions for two ogive
cylinders at a value of K, of 2.0 are presented in figure 6
and serve to illustrate the general results obtained in refer-
ence 7. The high degree of correlation of pressures in figure 6
indicates that the hypersonic similarity law applies in &
rotational flow field and verifies the analysis presented by
Hayes in reference 2. ‘

Lifting cones.—For bodies of revolution at angles of at-
tack, a limited experimental check was made in the Ames 10-
by 14-inch supersonic wind tunnel. Two conés havingfineness
ratios of 3.0 and 4.9 were tested at Mach numbers of 2.75
and 4.46, respectively; thus, the value of K, was 0.91.
Overlapping values of K, up to 14° were obtained. Pressure
measurements were made at the locations shown in figure
7 for angles up to 5°. The results are shown in figure 8 as a
function of K, Agreement with the prediction of the
similarity law is generally observed, in that the values of
p/po for corresponding points on the two bodies lie essentially
along the same curve. The exception to this agreement is
on the lee sides of the cones (e=180°) where 1t is noted that
significantly different curves are defined. This difference
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* Ficure 5.—Range of applicability of similarity law for nonlifting cones
and ogives.
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is believed to be the result of the dissimilar flow separation
from the two cones, caused by the fact that identical values
of R, could not be obtained for the two cones at the samo
value of K,. This difference in R. should not affect the
pressures appreciably where separation does not occur.
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F1cUre 6.—Variation of pressure ratio, P/P,, along nonlifting ogive
cylinders for a value of the similarity parameter, K,, of 2.0.
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.
WINGS AND WING-BODY COMBINATIONS

If, for spanwise symmetric wings, only angle of attack is
considered, the similarity parameters Kg and Kj vanish
from equations (49) and only three of the aerodynamic
coefficients remain. The corresponding force and moment
functions are reduced to the following form: 8

M00L= 6’L= 5L(Kl’ Kb: Ka)

MOZOD=5D= 5’D(K,,Kb, Ka) R (53).

M00m= 55;: 5M(Kl) Kb; KJ)

These relations also apply, of course, to6 wing sections. In
this case, b and therefore K, are infinite and it is seen from
equations (16) through (18) that the terms involving K,
vanish and the equations reduce to the two-dimensional
equations for hypersonic flow. The similarity parameter
K, is thus eliminated from equation (53). This result is
equivalent to that presented in reference 1.°

Of practical importance is the conclusion to be drawn
from application of the dimensionless equation of motion
(eq. (16)) and the dimensionless boundary condition (eq.
(18)), to steady flow about thin wings at zero angle of yaw.
It is noticed in the equations that the parameter, K,, always

appears in the form
g,_y_f_
K, b

If b is of the same order of magnitude as ¢, then, consistent
with the other approximations made in developing this
equation, the terms involving (X,/K;)? are to be neglected.
Performing this operation, however, yields the equation of
motion for two-dimensional flow. Thus, it is indicated that,
if the aspect ratio is of the order of magnitude of one or
greater, hypersonic flow about wings may be treated ap-
proximately as a two-dimensional-flow problem. The latter
problem is, of course, relatively simple to solve.

From a physical point of view, this conclusion stems from
the fact that, in supersonic flow, the effect of a disturbance
at o point is confined to the conical zone formed by the
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Mach lines from that point. For very high Mach numbers:
this zone of influence is a narrow region behind the dis-
turbance. Consequently, conditions along a streamline are,
for the most part, independent of the conditions along
adjacent streamlines.’® For thin wings in hypersonic flow,
therefore, it can readily be seen that the zone of influence of
disturbances caused by wing tips will, for example, be small
compared to the wing-area if the aspect ratio is greater than
one. The effect of the tip disturbances on the aerodynamic
characteristics of the wing will, of course, be correspondingly
small.

Wing-body combinations may be thought of merely as
irregularshaped bodies. As such, the aerodynamic coeffi-
cients are correlated by equations (49) with the restrictions
discussed in relation to these equations. The illustrative
example, given in figure 3 in connection with the free-flight
motion of a wing-body configiration, can be re-examined on
the basis of steady flow. It is seen that in going from a
Mach number of 4 to a Mach number of 8, the wing and
body lengths are doubled, the angle of attack is decreased by
one-half, while the body thickness and wing spans remain
the same. The changes in some of the aerodynamic coeffi-
cients are also shown in the figure.

CONCLUDING REMARKS

The similarity law for nonsteady, inviscid bypersonic flow
about slender three-dimensional shapes has been derived in
terms of customary aerodynamic parameters. The conclu-
sions drawn from the potential analysis used to derive the
law were found to apply also to rotational flows. As a
direct consequence of this law, it was found that the ratio of
the local static pressure to the free-stream static pressure is
the same at corresponding points in similar flow fields. With
the aid of this law, expressions were obtained for correlating
the forces and moments acting on related shapes in hyper-
sonic flows.

It was found that the motions of related bodies in free
flight could be correlated using the hypersonic similarity
parameters and additional parameters relating the inertial
properties of the bodies and the air densities. The dynamic
similarity of the free flight of related bodies can be obtained
for motions which include pitching and yawing but no
rolling. For pure rolling motions, similarity can again be
achieved.

In the case of steady flow about inclined bodies of revolu-
tion, the correlations of forces and moments derived from
the similarity law can be generalized to include the significant
effects of the viscous cross force.

The results of a computational analysis, using .the method
of characteristics, showed that the similarity law as applied
to nonlifting cones and ogives is applicable over & wider range
of Mach numbers and fineness ratios than might be expected
from the assumptions made in the derivation.

AMES ABRONAUTICAL LLABORATORY,
Narionat ApvisorY CoOMAMITTEE FOR ABRONAUTICS,
Morrerr Freup, Cavir., June 6, 1951.

8 Parsmeters cquivalent to thess were obtained by Tslen and, although not published, were presented in the form of lecture notes which were brought to the attention of the anthors after

completion of this Investigation.

¢ The exponents of A, obtalned here are different from those obtained In reference 1, because b-¢ is used as a reference area, rather than e¢-b.
19This result holds, In fact, for nonsteady as well as steady hypersonie flow abouat thin wings, as pointed out by Eggers In reforence 10,



APPENDIX A ‘
EXTENSION OF POTENTIAL FLOW ANALYSIS TO ROTATIONAL FLOW

The hypersonic similarity law can be extended to rotational
flows by the method of Hayes (ref. 2). This extension is in
fact demonstrated by Hayes’ results. However, to under-
stand fully the reasoning involved, it is instructive to elabo-
rate on his analysis. Hayes showed that the hypersonic
potential equation for steady flow about slender shapes was
identical to the nonsteady potential equation in one less
spatial coordinate under the transformation

z=ayM8 A1
In the case of two-dimensional flow, the transformation,
equation (A1), allows, for example, the upper surface of the

body profile to be replaced by the upper surface of & moving
piston as shown in figure 9. The piston motion must be

such that a given piston displacement y; at time 8; will be -

the same as the ordinate on the body profile at the coordinate
% given by the relation ux;=ayMy8;.

[o2] [+2]
bt
y Y y Piston
7
12 Gy My 8 34| 2 SACN)
Mo 1 v
————— X
t 4 g 1
4 A

(a) (b}
(a) Steady flow. (b) Analogous nonsteady flow.

Freure 9.—Two-dimensional steady flow and analogous one-dimen-
sional nonsteady flow.

In investigating the physical significance of this trans-
formation, Hayes pointed out that its existence resulted
from the basic assumptions of slender bodies and large
Mach numbers. Since, as a result of these assumptions, the
2 component of the fluid velocity does not change appreciably
and is always much greater than the local speed of sound,
there is essentially no chance for disturbances to propagate
in the 2 direction. 'This is the essential feature that permits
the replacement of 2 by the time variable  and, hence, the
existence of an analogous nonsteady flow.

Hayes further showed that in hypersonic flow about
slender shapes the local Mach number remains large com-
pared to one, even in the presence of strong shock waves
caused by small surface inclinations. Consequently, the
consideration of the bypersonic flow about & slender body as
o nonstationary problem in one less spatial dimension re-
mains valid when shock waves and the resultant entropy

gradients are present.
Ope further feature of Hayes analysis, which is not

exphmtly stated in reference 2, is that similarity follows
directly from the existence of the analogous nonsteady flow.

This feat;ure is illustrated for two-dimensional flows as
follows: The motion of the nonsteady boundary (in this case,
the piston face) can be expressed in the following dimen-

sionless form:
Y aof
= (%)

Upon transforming to the two-dimensional steady flow sys-
tem, by the substitution of equation (A1) into the functional
relationship on the right side of equation (A2), we obtain

1 1
t-r (i) () ) oo
)

(A4)

(A2)

or

%=fn (%) K,=constant

Equation (A4) expresses the conditions for which the non-
steady flow system can replace a steady flow system; namely,
that the body profile must be expressible in a specific non-
dimensional form and that the parameter, K;, must be
constant for all profiles given by this form. These are, of
course, the conditions of hypersonic similitude in two-
dimensionel steady flow. The extension of these considera-
tions to three-dimensional steady flow is straightforward.
To extend these concepts and results to three-dimensional,
nonsteady flow, the nonsteady part of the flow may be
considered, in the analogous nonsteady flow, as a nonsteady
increment on the already nonsteady boundary. This can be
demonstrated with reference to the potential analysis as
follows: If the transformation, z=a,Myy, is used on the
equation for steady-state hypersomc flow in perturbation

form ! .
M, v+1 e’ v—1 so']
2, | 1 —(v—1)22 L kil —
Mo Prz [1‘ (’Y 1) @ Pz 2 ao ) ao Py
—1 3 +1 (4
I:l ('Y—l) == (27 X ) :;:2 Y 5) Zo Cet2 (_' ﬂov‘larﬁ"l"
oy | M
e ¢,¢u)=o (48)
there is obtained the equation
Poy ev _Y+le’ v—le
"afoz"'— 1—(v—1) a? ) a;: ) a; Py —
ev ¥—1of v+1lo
[1'_(7_1) a:z p) a:;z D) th' ¢l¢+

By applying the same transformation to the nonsteady flow
equation

uInalltheequntionsotth_.lssecﬂon,th.ewlndamaxemadetocolnnidewlththnbodyaxeslnordernottoobscurethaargmnent.
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_ Mo v+1 ¢! y—1of
¢aa+ﬂfo Pzz [1 ('Y 1) Pz— ) aoz 9 a,ﬁ
M 1 1 o2
('Y'—l) :I%'v l:l (7_1)__0?’:__2—' Zz T_jl?,_—’z_oi_
M A
(v—1) :lsosrl-? aoo Py pmt ¢z¢n+¢’¢2 ¢r )+

9":0+ 4’10+ 2 ¢:9>— (A7)

with an additional variable change of
Q=0-+4y¢ (A8)

the same equation (A6) is obtained with ¢ replaced by ©.
Hence, Hayes’ conclusions concerning steady-state, three-
dimensional flow should apply equelly well to nonsteady,
three-dimensional flows.

APPENDIX B.
CORRELATION OF THE FLIGHT-PATH CURVATURE

Consider related bodies moving through properly related

fluids in paths of finite radii of curvature. Equating the

contrifugal force to the eude force, the following relation is
obtained:

(B1)

After rearranging in terms of similarity parameters, equation
(B1) becomes

14 —Ri= Oo 5 Po VozA

constant

B2)

The parameter Myc/R correlates the radii of curvature at
corresponding points of similar flight paths.
This conclusion is also true for curved flight in the vertical

plane.
APPENDIX C

. FORCES AND MOMENTS DUE TO VISCOUS CROSSFLOWS ON
BODIES OF REYOLUTION .

M A
R 0 bt

Inreference 11, Prandtl demonstrated that laminar viscous
flows over infinitely long inclined cylinders may be treated
by considering, independently, the components of the flow
normal and parallel to the axis of the cylinder. Jones, in
reference 12, applied this concept to.the study of boundary-
layer flows over yawed cylinders. The work of Prandtl and
Jones suggests, as indicated by Allen in reference 8, that the
cross force on slender inclined bodies of revolution may be
estimated in the following manner: Each cross section of the
body is treated as an element of an infinite cylinder of the
same radius. The cross force per unit length on such a
cylinder is given by the following equation:

(C1)

The incremental lift, drag, and moment produced by this
cross force are then given by the relations

8;=1Cq,p Vo 8ID? e

lift="rc4,00V4® sin® a cos «
d.]'.'a,g=7'Cgcpq;|.[7g2 Sin3 [+ (02)

moment=rrcq po Ve’ sin®

Retaining leading terms in « and integrating over the body, -
where r=r(z), the aerodynamic coefficients are given by the

equations
284,02 (o A
Cr,= v J; rdz

284 02 o
y= cj{ frda:
1]

284 c® (o
Cur= e fr:cda;
0 J

-~

(C3)

Ae

where the reference area is proportional to the maximum
cross-sectional area of the body, and the reference length is
the body length. The coefficient 2,, is the mean ¢,, for the
body of revolution, and has therefore been ta.ken outside
the integral.
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